Adenovirus-Mediated siRNA Targeting CXCR2 Attenuates Titanium Particle-Induced Osteolysis by Suppressing Osteoclast Formation
نویسندگان
چکیده
BACKGROUND Wear particle-induced peri-implant loosening is the most common complication affecting long-term outcomes in patients who undergo total joint arthroplasty. Wear particles and by-products from joint replacements may cause chronic local inflammation and foreign body reactions, which can in turn lead to osteolysis. Thus, inhibiting the formation and activity of osteoclasts may improve the functionality and long-term success of total joint arthroplasty. The aim of this study was to interfere with CXC chemokine receptor type 2 (CXCR2) to explore its role in wear particle-induced osteolysis. MATERIAL AND METHODS Morphological and biochemical assays were used to assess osteoclastogenesis in vivo and in vitro. CXCR2 was upregulated in osteoclast formation. RESULTS Local injection with adenovirus-mediated siRNA targeting CXCR2 inhibited titanium-induced osteolysis in a mouse calvarial model in vivo. Furthermore, siCXCR2 suppressed osteoclast formation both directly by acting on osteoclasts themselves and indirectly by altering RANKL and OPG expression in osteoblasts in vitro. CONCLUSIONS CXCR2 plays a critical role in particle-induced osteolysis, and siCXCR2 may be a novel treatment for aseptic loosening.
منابع مشابه
Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-қB activation and titanium particle-induced osteolysis in a mouse model.
The RANKL-induced NF-κB signaling pathway is required for osteoclast formation and function. By screening for compounds that inhibit RANKL-induced NF-κB activation using a luciferase reporter gene assay in RAW264.7 cells, we identified triptolide (PG490), as a candidate compound targeting osteoclast differentiation and osteoclast-mediated osteolysis. Triptolide (PG490) is an active compound of ...
متن کاملWear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis
Objective(s): The study aimed to uncover the underlying mechanism linking wear particles to osteoclast differentiation, and we explored the effect of titanium particles of different sizes on CD147 expression and autophagy in macrophages. Materials and Methods: Effects of titanium particles on CD147 and RANKL mRNA were detected by QPCR; protein level of CD147 and Beclin-1 were detected by Wester...
متن کاملDihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts
Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteob...
متن کاملAdenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-indu...
متن کاملThe effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling.
Wear particle-induced aseptic prosthetic loosening is one of the most common reasons for total joint arthroplasty (TJA). Extensive bone destruction (osteolysis) by osteoclasts plays an important role in wear particle-induced peri-implant loosening. Thus, strategies for inhibiting osteoclast function may have therapeutic benefit for prosthetic loosening. Here, we mimicked the process of magnesiu...
متن کامل